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Setup

I Let (X , g) be a Riemannian manifold (or finite metric
simplicial complex) with basepoint.

I Define ΩX := based (smooth) loops on X

I Define TγΩX = {vector fields along γ in X}
I Given V ∈ TγΩX , have a norm ||V || := max

p∈γ
||V (p)||(X ,g).

I This induces:
I metric on ΩX ,
I a norm ||.||∞ on differential forms on X ,
I notion of volume on chains in ΩX ,

I And also have length functional Length : ΩX → R.
I induces another notion of size on chains: supLength
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Applications

Can ask for quantitative estimates on elements in H∗(ΩX ;R) and
H∗(ΩX ;R).

I Example: Hopf : π3(S2)→ Z ! Hopf ∈ H2(ΩS2;R) ∼= R
Gromov’s theorem that S3 L−Lipschitz−−−−−−−→ S2 has Hopf invariant
. L4 has analogy in this setting: the existence of a 2-form on
ΩS2 representing Hopf with bounded norm.
I In general,

πn(X )⊗ R
∼=−→ πn−1(ΩX )⊗ R Hurewicz

↪−−−−−→ Hn−1(ΩX ;R)

I Question: Given φ ∈ Hn(ΩX ), which parts of the
volume/supLength plane do representatives live in?

I Theorem: S3 triangulated with N 3-simplices, inducing cell
structure on ΩPLS

3. Then any cellular sweepout Σ→ ΩPLS
3

requires & N4/3 2-cells.
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Thanks for listening!


	Setup
	Applications
	Section no. 4
	blocs


