Quantitative Geometry of Loop Spaces

Robin Elliott

April 24, 2019

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.
- This induces:
- metric on ΩX,

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.
- This induces:
- metric on ΩX,
- a norm $\|.\|_{\infty}$ on differential forms on X,

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.
- This induces:
- metric on ΩX,
- a norm $\|.\|_{\infty}$ on differential forms on X,
- notion of volume on chains in ΩX,

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.
- This induces:
- metric on ΩX,
- a norm $\|.\|_{\infty}$ on differential forms on X,
- notion of volume on chains in ΩX,
- And also have length functional Length : $\Omega X \rightarrow \mathbb{R}$.

Setup

- Let (X, g) be a Riemannian manifold (or finite metric simplicial complex) with basepoint.
- Define $\Omega X:=$ based (smooth) loops on X
- Define $T_{\gamma} \Omega X=\{$ vector fields along γ in $X\}$
- Given $V \in T_{\gamma} \Omega X$, have a norm $\|V\|:=\max _{p \in \gamma}\|V(p)\|_{(X, g)}$.
- This induces:
- metric on ΩX,
- a norm $\|.\|_{\infty}$ on differential forms on X,
- notion of volume on chains in ΩX,
- And also have length functional Length : $\Omega X \rightarrow \mathbb{R}$.
- induces another notion of size on chains: supLength

Applications

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

- Example: Hopf : $\pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z} \longleftrightarrow H o p f \in H^{2}\left(\Omega S^{2} ; \mathbb{R}\right) \cong \mathbb{R}$

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

- Example: Hopf : $\pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z}$ н Hopf $\in H^{2}\left(\Omega S^{2} ; \mathbb{R}\right) \cong \mathbb{R}$ Gromov's theorem that $S^{3} \xrightarrow{\text { L-Lipschitz }} S^{2}$ has Hopf invariant $\lesssim L^{4}$ has analogy in this setting: the existence of a 2 -form on ΩS^{2} representing Hopf with bounded norm.

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

- Example: Hopf : $\pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z}$ н Hopf $\in H^{2}\left(\Omega S^{2} ; \mathbb{R}\right) \cong \mathbb{R}$ Gromov's theorem that $S^{3} \xrightarrow{L-L i p s c h i t z} S^{2}$ has Hopf invariant $\lesssim L^{4}$ has analogy in this setting: the existence of a 2 -form on ΩS^{2} representing Hopf with bounded norm.
- In general,

$$
\pi_{n}(X) \otimes \mathbb{R} \xrightarrow{\cong} \pi_{n-1}(\Omega X) \otimes \mathbb{R} \xrightarrow{\text { Hurewicz }} H_{n-1}(\Omega X ; \mathbb{R})
$$

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

- Example: Hopf : $\pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z} \longleftrightarrow H o p f \in H^{2}\left(\Omega S^{2} ; \mathbb{R}\right) \cong \mathbb{R}$ Gromov's theorem that $S^{3} \xrightarrow{L-L i p s c h i t z} S^{2}$ has Hopf invariant $\lesssim L^{4}$ has analogy in this setting: the existence of a 2 -form on ΩS^{2} representing Hopf with bounded norm.
- In general,

$$
\pi_{n}(X) \otimes \mathbb{R} \xrightarrow{\cong} \pi_{n-1}(\Omega X) \otimes \mathbb{R} \xrightarrow{\text { Hurewicz }} H_{n-1}(\Omega X ; \mathbb{R})
$$

- Question: Given $\phi \in H_{n}(\Omega X)$, which parts of the volume/supLength plane do representatives live in?

Applications

Can ask for quantitative estimates on elements in $H_{*}(\Omega X ; \mathbb{R})$ and $H^{*}(\Omega X ; \mathbb{R})$.

- Example: Hopf : $\pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z}$ \& Hopf $\in H^{2}\left(\Omega S^{2} ; \mathbb{R}\right) \cong \mathbb{R}$ Gromov's theorem that $S^{3} \xrightarrow{\text { L-Lipschitz }} S^{2}$ has Hopf invariant $\lesssim L^{4}$ has analogy in this setting: the existence of a 2 -form on ΩS^{2} representing Hopf with bounded norm.
- In general,

$$
\pi_{n}(X) \otimes \mathbb{R} \xrightarrow{\cong} \pi_{n-1}(\Omega X) \otimes \mathbb{R} \xrightarrow{\text { Hurewicz }} H_{n-1}(\Omega X ; \mathbb{R})
$$

- Question: Given $\phi \in H_{n}(\Omega X)$, which parts of the volume/supLength plane do representatives live in?
- Theorem: S^{3} triangulated with $N 3$-simplices, inducing cell structure on $\Omega_{P L} S^{3}$. Then any cellular sweepout $\Sigma \rightarrow \Omega_{P L} S^{3}$ requires $\gtrsim N^{4 / 3} 2$-cells.

Thanks for listening!

