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Define QX := based (smooth) loops on X

Define T,QX = {vector fields along v in X}

Given V € T,QX, have a norm || V|| := mEaxHV(p)H(X’g).
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This induces:

» metric on QX,

» anorm ||.||« on differential forms on X,

» notion of volume on chains in QX,
» And also have length functional Length : QX — R.
» induces another notion of size on chains: suplLength
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» Theorem: S3 triangulated with N 3-simplices, inducing cell
structure on Qp; S3. Then any cellular sweepout ¥ — Qp; S3
requires > N*/3 2-cells.



Thanks for listening!
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